



Rainbow Road Bridge Replacement Project

Carter Lautner, P.Eng., Ryan MacPhee, C.E.T., and Olivia Lautner, P.Eng

Project Team

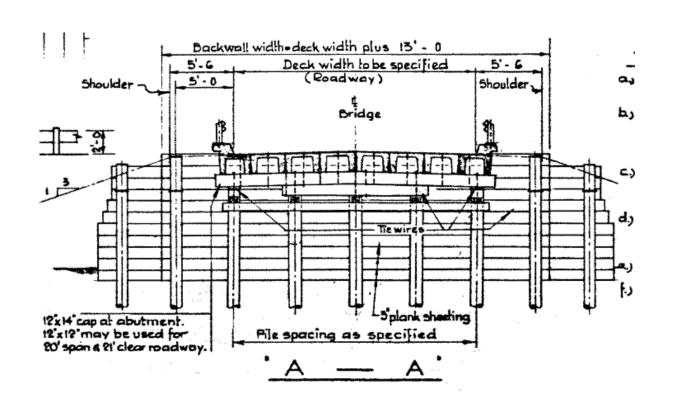
Carter Lautner, P.Eng. Project Engineer Associated Engineering Ryan MacPhee, C.E.T. Technologist Associated Engineering Olivia Lautner, P.Eng. Project Manager Volker Stevin Highways

Introduction

- Location: Chestermere, Alberta
- Project Delivery Model: Design-Bid-Build (DBB)
- Key Project Stakeholders:
 - Consultant: Associated Engineering
 - Prime Contractor: Volker Stevin Highways (Bridge Division)
 - Owner: City of Chestermere
 - Other Affiliations: Western Headworks Canal, Canadian National Railway, Epcor, Various Utility Companies
- Collaboration Strategy: Focus on consultant-contractor-owner partnership to address daily challenges and foster innovation

Introduction

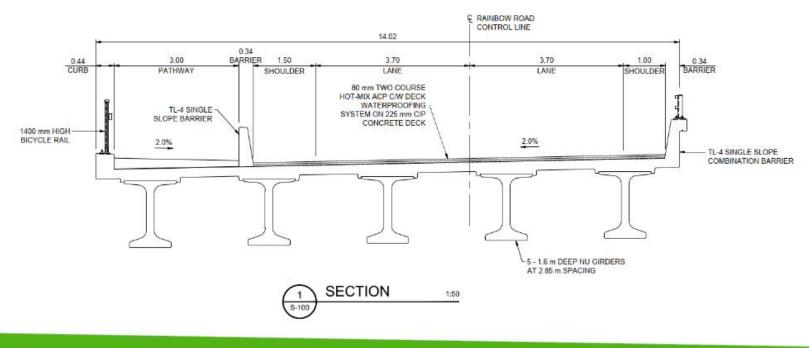
- Location: Chestermere, Alberta
- Project Delivery Model: Design-Bid-Build (DBB)
- Key Project Stakeholders:
 - Consultant: Associated Engineering
 - Prime Contractor: Volker Stevin Highways (Bridge Division)
 - Owner: City of Chestermere
 - Other Affiliations: Western Headworks Canal, Canadian National Railway, Epcor, Various Utility Companies
- Collaboration Strategy: Focus on consultant-contractor-owner partnership to address daily challenges and foster innovation

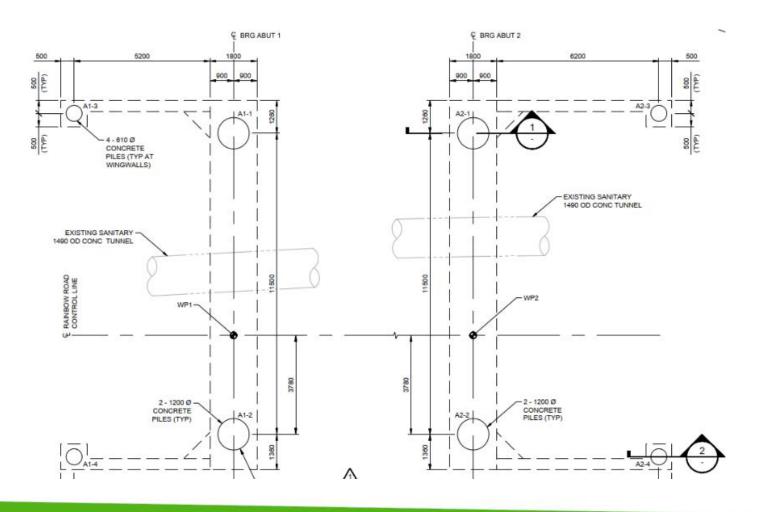

Introduction – Existing Structure



Introduction - Existing Structure Cross Section

Introduction - New Structure


Introduction - New Structure

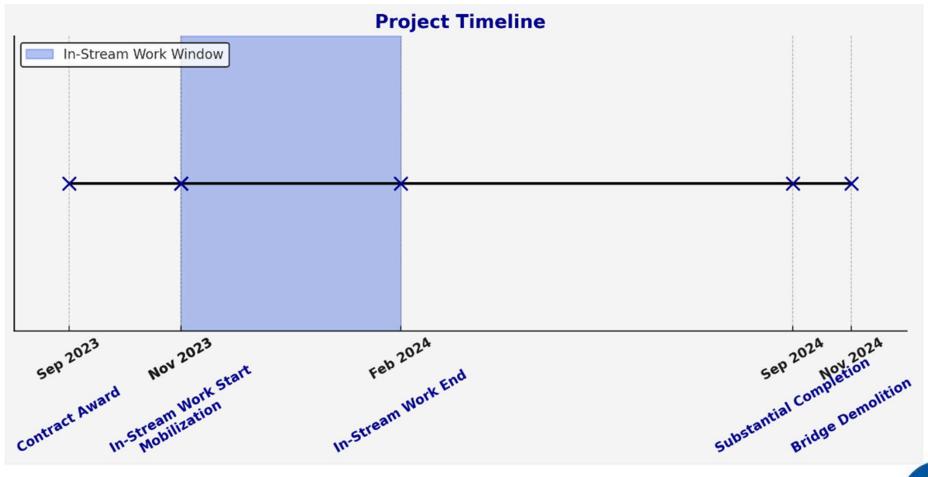

Introduction - New Structure Cross Section

- 31.5 m single span 1600 NU girders, five girder lines
- Semi-integral abutment, cast-in-place concrete pile foundation

Introduction - New Structure Plan

Introduction - Additional Project Scope

- Roadway re-alignment and pathway tie ins
- Stormwater tie in manholes and catch basin into existing infrastructure. Drain troughs not suitable for Western Headworks Canal (WHC)
- Shallow Utilities Relocation Fortis Overhead Power
- Alberta Irrigation Land Access to WHC
- Replacement bridge structure pedestrian connectivity



Project Objectives and Timelines

- Primary Goal: Timely replacement of the Rainbow Road Bridge (a main thoroughfare in the City) to meet the City's completion deadline
- Tight Schedule: Highlighting the importance of the City's deadline and how it influenced decision making

Project Objectives and Timelines

Design Challenges and Solutions

- Tight Urban Area
- Consultant Design Challenges:
 - Foundation design dictated the abutment type
 - Unreliable as built records
 - Sanitary sewer right through the design alignment for the roadway
 - Pipe alignment on horizontal curve
 - Robotic LiDAR survey required to confirm alignment and offset to bridge foundation piles

- Challenge: Deep Sanitary Line Survey
 - Solutions:
 - Conduct thorough site investigation
 - Confined space entry support
 - Survey during low flow conditions
 - Flush line
 - Outcome: Confirmed location of the 1200 mm HDPElined sanitary trunk

- Challenge: Deep Sanitary Line Survey
 - Solutions:
 - Conduct thorough site investigation
 - Confined space entry support
 - Survey during low flow conditions
 - Flush line
 - Outcome: Confirmed location of the 1200 mm HDPElined sanitary trunk

- Challenge: Geometric Constraints for Girder Installation
 - Issue: Limited space for equipment in urban area, load restricted bridge, and limited road closures allowed
 - Solution:
 - Tandem lift
 - Pre-erection activities at EPCOR facility
 - Outcome: Installed NU girders safety and efficiently, minimizing public disruption

- Challenge: Geometric Constraints for Girder Installation
 - Issue: Limited space for equipment in urban area, load restricted bridge, and limited road closures allowed
 - Solution:
 - Tandem lift
 - Pre-erection activities at EPCOR facility
 - Outcome: Installed NU girders safety and efficiently, minimizing public disruption

- Challenge: Fall Protection
 - Issue: Varied fall heights (3 m 4 m) required adaptive safety systems
 - Solutions:
 - Man-Lifts with Lanyard: Secured workers during crane hand-off
 - Horizontal Lifeline Systems: Protected workers during deck formwork installation (4 m)
 - Rebar and Self Retracting Lifelines: Anchored workers during diaphragm and bracing installation (<4 m)
 - Outcome: Workers protected against fall risks

- Challenge: Fall Protection
 - Issue: Varied fall heights (3 m 4 m) required adaptive safety systems
 - Solutions:
 - Man-Lifts with Lanyard: Secured workers during crane hand-off
 - Horizontal Lifeline Systems: Protected workers during deck formwork installation (4 m)
 - Rebar and Self Retracting Lifelines: Anchored workers during diaphragm and bracing installation (<4 m)
 - Outcome: Workers protected against fall risks

- Challenge: Adhering to Completion Deadlines
 - Issue: Need to meet the tight timeline
 - Solution:
 - Deployed two piling rigs at each abutment to accelerate cast-in-place concrete pile installation

- Challenge: Adhering to Completion Deadlines
 - Issue: Need to meet the tight timeline
 - Solution:
 - Deployed two piling rigs at each abutment to accelerate cast-in-place concrete pile installation

- Challenge: Adhering to Completion Deadlines
 - Issue: Need to meet the tight timeline
 - Solution:
 - Deployed two piling rigs at each abutment to accelerate cast-in-place concrete pile installation
 - Poured all cast-in-place abutment components monolithically

- Challenge: Adhering to Completion Deadlines
 - Issue: Need to meet the tight timeline
 - Solution:
 - Deployed two piling rigs at each abutment to accelerate cast-in-place concrete pile installation
 - Poured all cast-in-place abutment components monolithically

- Challenge: Proximity to Active CN Spur Line
 - Issue: Transporting 100 ft girders over active train tracks required precise coordination.
 - Solution:
 - Early and continuous communication with CN Rail
 - Secured green lights for track crossings, ensuring no train activity during girder delivery

- Challenge: Deck Finishing Approach
 - Issue: Traditional finishing machines and standard work bridges cannot maneuver around obstacles like barrier reinforcing steel.
 - Solution:
 - Gomaco Deck Finishing Machine for deck slab

- Challenge: Deck Finishing Approach
 - Issue: Traditional finishing machines and standard work bridges cannot maneuver around obstacles like barrier reinforcing steel.
 - Solution:
 - Gomaco Deck Finishing Machine for deck slab

- Challenge: Deck Finishing Approach
 - Issue: Traditional finishing machines and standard work bridges cannot maneuver around obstacles like barrier reinforcing steel.
 - Solution:
 - Gomaco Deck Finishing Machine for deck slab
 - Roller Screed for sub-sidewalk deck slab

- Challenge: Deck Finishing Approach
 - Issue: Traditional finishing machines and standard work bridges cannot maneuver around obstacles like barrier reinforcing steel.
 - Solution:
 - Gomaco Deck Finishing Machine for deck slab
 - Roller Screed for sub-sidewalk deck slab

- Challenge: Deck Finishing Approach
 - Issue: Traditional finishing machines and standard work bridges cannot maneuver around obstacles like barrier reinforcing steel.
 - Solution:
 - Gomaco Deck Finishing Machine for deck slab
 - Roller Screed for sub-sidewalk deck slab
 - Custom Work Bridges accommodate cast-in-place barriers not adjacent to the rails / supports

- Challenge: Deck Finishing Approach
 - Issue: Traditional finishing machines and standard work bridges cannot maneuver around obstacles like barrier reinforcing steel.
 - Solution:
 - Gomaco Deck Finishing Machine for deck slab
 - Roller Screed for sub-sidewalk deck slab
 - Custom Work Bridges accommodate cast-in-place barriers not adjacent to the rails / supports

Project Impact and Concluding Remarks

Thank you! Questions?

